On multiplicities in length spectra of arithmetic hyperbolic three-orbifolds
نویسندگان
چکیده
منابع مشابه
Symmetries, Isometries and Length Spectra of Closed Hyperbolic Three-Manifolds
Hodgson was partially supported by the Australian Research Council. Weeks was partially supported by the National Science Foundation grant DMS-8920161, through the Geometry Center at the University of Minnesota.
متن کاملPeripheral separability and cusps of arithmetic hyperbolic orbifolds
For X = R , C , or H , it is well known that cusp cross-sections of finite volume X –hyperbolic (n + 1)–orbifolds are flat n–orbifolds or almost flat orbifolds modelled on the (2n + 1)–dimensional Heisenberg group N2n+1 or the (4n + 3)–dimensional quaternionic Heisenberg group N4n+3(H). We give a necessary and sufficient condition for such manifolds to be diffeomorphic to a cusp cross-section o...
متن کاملCusps of Minimal Non-compact Arithmetic Hyperbolic 3-orbifolds
In this paper we count the number of cusps of minimal non-compact finite volume arithmetic hyperbolic 3-orbifolds. We show that for each N , the orbifolds of this kind which have exactly N cusps lie in a finite set of commensurability classes, but either an empty or an infinite number of isometry classes.
متن کاملThe length spectra of arithmetic hyperbolic 3-manifolds and their totally geodesic surfaces
We examine the relationship between the length spectrum and the geometric genus spectrum of an arithmetic hyperbolic 3-orbifold M . In particular we analyze the extent to which the geometry of M is determined by the closed geodesics coming from finite area totally geodesic surfaces. Using techniques from analytic number theory, we address the following problems: Is the commensurability class of...
متن کاملDistribution Agreement Complex Iso-length-spectrality in Arithmetic Hyperbolic 3-manifolds Complex Iso-length-spectrality in Arithmetic Hyperbolic 3-manifolds
Complex iso-length-spectrality in arithmetic hyperbolic 3-manifolds
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinearity
سال: 1996
ISSN: 0951-7715,1361-6544
DOI: 10.1088/0951-7715/9/2/014